
Bayesian Reasoning

Lecture 17

Statistics is a tool to aid and organize 
our reasoning and beliefs about the 

world



Statistics primer 
for Bayesian thinking



BOOLEAN-VALUED RANDOM 
VARIABLES



Discrete Boolean-valued random 
variables
A is a Boolean-valued random variable if A denotes an event, and 

there is some degree of uncertainty as to whether A occurs or 
not.

Examples:

● P = True: The US president in 2024 will be male

● P=¬True: The US president will not be a male

● H = True: You wake up tomorrow with a headache

● H=¬True: No headache



Probabilities

We write P(A=a), or P(A=true) or simple P(A) as “the fraction of 
possible worlds where A=a is true”

P(A) is the 
proportion of 
red blocks 
out of the 
blue universe

World in which A=a

World in which A=¬a

Event space of 
all possible 
worlds

Its area=1.0

6

10



The Axioms of Probability

We do not need to prove that:

I. 0<= P(A=a)<=1

II. P(A or B)=P(A)+P(B)-P(A and B)

III. P(A)+P(¬A)=1 Anot A

B

ABA



Theorems of Probability: Theorem 1

P(¬A )=1-P(A)

Anot A



Theorems of Probability: Theorem  2

P(A)=P(A ∩ B) + P(A ∩ ¬B) 

A ∩ B

A ∩ ¬B

BA



Conditional probability: definition

● P(A|B) = fraction of worlds in which A is true 
out of all the worlds where B is true 

CP definition: P(A|B)= P(A ∩ B) / P(B)

A ∩ B

BA



Conditional probability: definition

● P(A|B) = fraction of worlds in which A is true 
out of all the worlds where B is true 

P (¬A|B) = P(¬A ∩ B) / P(B)

¬A 
∩ B

BA



Conditional probability: definition

● P(B|A) = fraction of worlds in which B is true 
out of all the worlds where A is true 

P(B|A)= P(A ∩ B) / P(A)

A ∩ B

BA

P(A ∩ B) = 4/60
P(A) = 20/60
P(B|A) = 4/60 : 20/60 = 0.2



Two random variables A and B are mutually independent if 

P(A|B) = P(A), which means that:

Knowing that B is true (or false) 

does not change the probability of A

Probabilistic independence

A ∩ B

BA

P(A|B) = P(A) 15/30 = 30/60

P(¬ A|B) = P(¬ A) 15/30 = 30/60

P(A| ¬ B) = P(A) 15/30 = 30/60

P(¬A| ¬ B) = P(A) 15/30 = 30/60



A is independent of B: knowing that B is true (or 
false) does not change the probability of A:

P(A|B) = P(A)

A and B are mutually exclusive – not independent 
variables: if A is true then B is false, if A is 
false then B is true with probability P(B|¬A)

P(A ∩ B)=0

Independent and mutually 
exclusive events

A

B

A

B



Joint probability of two events

From the definition of conditional probabilities:

P(A|B)= P(A ∩ B) / P(B)

we can compute P(A ∩ B) – that both events happened 
together:

P(A ∩ B) =P(A|B)P(B)

If A and B are independent that becomes:

P(A ∩ B) =P(A)P(B)



If A and B are mutually exclusive:

P(A or B)=P(A)+P(B)-P(A and B)

A and ¬A are mutually exclusive:

P(A or ¬A)=P(A ) + P(¬A) = 1

Probability of two mutually 
exclusive events

Anot A

B



Conditional independence

Conditional independence means that once you know the value of 
1 random variable, other variables become independent

Example: (Height, Vocabulary) are not independent since very small 
people tend to be children, known for their more basic 
vocabularies

But given that two people are 19 years old (i.e., conditional on age) 
there is no reason to think that one person's vocabulary is larger if 
we are told that they are taller.

So given that we know Age, we can calculate joint conditional 
probability of (Height, Vocabulary) as a simple multiplication. 

https://en.wikipedia.org/wiki/Conditional_independence

https://en.wikipedia.org/wiki/Conditional_independence


Conditional independence of 2 
variables given the third

P(A ∩ B | C) = 1/9

P(A ∩ B) = 4/36 = 1/9

P(A ∩ B | C) = P(A ∩ B)

P(A|C) = 3/9

P(B|C) = 3/9

P(A ∩ B | C) = P(A|C)*P(B|C) 

A and B are independent in the world 
where C is True (C is known, it occured)

BA C

However, in general A and B are not independent:

P(A) = 13/36 ≈ 0.36, and P(A|B) = 4/13 ≈ 0.31 → P(A) ≠ P(A|B)

Definition of 
conditional 
independence



Bayes theorem

P(A ∩ B) =P(A|B)P(B)

On the other hand:

P(B ∩ A) =P(B|A)P(A)

P(A|B)P(B)= P(B|A)P(A)

and we can express conditional probability of A given B 
through conditional probability of B given A and 
unconditional probabilities of A and B:

P(A|B) = P(B|A)P(A)/P(B)

From definition of 
Conditional probability



Multiple Boolean random variables

All theorems for 2 Boolean-valued random variables can be 
extended to several random variables C, E1, E2,…,En.  

Let C, E1, E2,…,En be Boolean-valued random variables.

For convenience, we will let E denote the n-tuple of random 
variables (E1, E2,…,En )

E1, E2,…,En = E

P(C ∩ E1 ∩ E2 ∩ … ∩ En)=P(C,E1,E2,…En)=P(C,E)

Chain rule:

P(C,E)=P(C)P(E1|C,E2,…En)P(E2|C,E1, E3,…,En)x…xP(En|C,E1,…En-1)

Just a 
notation



Multiple variables dependent on C

If E1,…En are mutually conditionally independent given C:

P(C,E)=P(C)P(E1|C)P(E2|C)x…xP(En|C)

And from Bayes theorem:

P(C|E)=P(C,E)/P(E)

That gives you a formula of the probability that the unknown 
condition C was true given a set of known evidences E

C – condition
E – evidence (event)



Bayesian Reasoning
Main lecture



Outline

• Belief and evidence

• Empirical reasoning: always probabilistic

• Inductive reasoning with probabilities

• Bayes method for updating beliefs

• Naïve Bayes classifier



Belief and evidence 
Inductive reasoning

• Critical thinking: always have good reasons for your 
beliefs

• Some reasons are 100% true - some only probable

• Inductive reasoning with probabilities: you always 
have a chance of being wrong

http://www.starwars.com/video/never-tell-me-the-odds

http://www.starwars.com/video/never-tell-me-the-odds


I believe that John will not be at 
the party

John will not be at the party

What are the odds?

yes no

In the absence of facts



I believe that John will not be at 
the party

John will not be at the party

I do not like John

What are the odds?

yes no

Invalid (illogical) reasoning



I believe that John will not be at 
the party

John will not be at the party

John is very shyI do not like John

What are the odds given this fact?

yes no

Probabilistic reasoning: valid fact (evidence)



I believe that John will not be at 
the party

John will not be at the party

John is in Beijing John is very shyI do not like John

What are the odds?

yes no

More facts – update your beliefs



Bayesian beliefs

• How do we judge that something is 
true?

• Can mathematics help make 
judgments more accurate?

• Bayes: our believes should be 
updated as new evidence becomes 
available

1701 - 1761



Bayes’ method for updating beliefs

• There are 2 events: A and not A (B) which you believe occur 
with probabilities P(A) and P(B). Estimation P(A):P(B) 
represents odds of A vs. B. 

• Collect evidence data E.

• Re-estimate P(A|E):P(B|E) and update your beliefs.



Probabilities. Bayes theorem

P(A|E) = P(E|A)P(A)/P(E)

P(A|E) = P(A ∩ E)/ P(E)

P(E|A) = P(A ∩ E)/ P(A)

Bayes theorem (formalized by Laplace)

Probability of 

event A given 

evidence

Probability of 

evidence given 

event A

Probability of event 

A without evidence 

(prior probability)

Inverse probabilities are typically easier to ascertain 



Bayes’ method with probabilities

• There are 2 events: A and not A (B) which you believe occur 
with probabilities P(A) and P(B). Estimation P(A):P(B) 
represents odds of A vs. B. 

• Collect evidence data E.

• Re-estimate P(A|E):P(B|E) and update your beliefs.

P(A|E) P(E|A)P(A)/P(E)

The updated odds are computed as:

P(B|E)        P(E|B)P(B)/P(E)
=



Bayes’ method with probabilities

• There are 2 events: A and not A (B) which you believe occur 
with probabilities P(A) and P(B). Estimation P(A):P(B) 
represents odds of A vs. B. 

• Collect evidence data E.

• Re-estimate P(A|E):P(B|E) and update your beliefs.

P(A|E) P(E|A)P(A)

or simply

P(B|E)        P(E|B)P(B)
=



Explanation by example: 
hit-and-run (fictitious)

• Taxicab company has 75 blue cabs (B) 
and 15 green cabs (G)

• At night when there are no other cars 
on the street: hit-and-run episode

• Question: what is more probable: 

B or G

?

15

15

15

15

15

Adopted from: The numbers behind NUMB3RS: solving crime with mathematics by Devlin and Lorden.

15



What is more probable: 
B or G

15

15 15

15 15

15

blue green

P(B):P(G)=5:1



New evidence

• Witness: “I saw a green cab”: EG

• What is the probability that the witness really saw a green 
car?

• Witness is tested at night conditions: identifies correct color 4 
times out of 5

• The eyewitness test shows:

P(EG | G)= 4/5  (correctly identified)

P(EG | B)= 1/5  (incorrectly identified)



Updating the odds

• In our case we want to compare:

the car was G given a witness testimony EG: P(G|EG)

vs.

the car was B given a witness testimony EG: P(B|EG)

Note: There is no way to know which of 2 was true, we just 
estimate



Back to hit-and-run
All cabs were on the streets: 

Prior odds ratio: P(B) : P(G) = 5/1

15

15 15

15 15

15

blue green

P(B|EG) P(B)*P(EG|B)   
P(G|EG) P(G)*P(EG|G)

=

P(EG | G)= 4/5  (correctly identified)

P(EG | B)= 1/5  (incorrectly identified)

Updated odds ratio:  



New odds

15 12

blue green

P(B|EG) P(B)*P(EG|B)   
P(G|EG) P(G)*P(EG|G)

=

Still 5:4 odds that the car was B!



Hit-and-run: full calculation
P(B) =5/6,  P(G) = 1/6 

P(EG | G)= 4/5  P(EG | B)= 1/5  

• Probability that car was green given the evidence EG:

P(G|EG)= P(G)* P(EG|G) /P(EG) = [1/6 * 4/5] / P(EG) =4/30P(EG)   

//- 4 parts of 30P(XG)

• Probability that car was blue given the evidence XG:

P(B|EG) = P(B)* P(EG|B) /P(EG) = [5/6 * 1/5] /P(EG) =5/30P(EG)  

//- 5 parts of 30P(XG)



Bayes in ‘real’ life. Example 1

HEADACHE

FLU

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

P(F|H) =?



Bayes in ‘real’ life. Example 1

HEADACHE

FLU

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

P(F|H) =P(H|F)P(F)/P(H)
=1/2*1/40 *10=1/8



Bayes in ‘real’ life. Example 2

Someone draws an envelope at random and offers to sell it to you.
How much should you pay?
The probability to win is 1:1. Pay no more than 50c.

WIN envelope LOSE envelope

$1.00



Bayes in ‘real’ life. Example 2

Variant: before deciding, you are allowed to see one bead 
drawn from the envelope.
Suppose it’s black: How much should you pay?
Suppose it’s red: How much should you pay?

WIN envelope LOSE envelope

$1.00



Bayes in ‘real’ life. Example 2

Variant: before deciding, you are allowed to see one bead 
drawn from the envelope.
Suppose it’s black: How much should you pay?
P(W|b)=P(b|W)P(W)/P(b) =(1/2*1/2)/P(b)=1/4 *1/P(b)
P(L|b)=P(b|L)P(L)/P(b)=(2/3*1/2)/P(b) = 1/3 * 1/P(b)
Probability to win is now 3:4 – pay not more than $(3/7) 

Suppose it’s red: How much should you pay? – the same logic

WIN envelope LOSE envelope

$1.00



When you want to:

• Determine the probability of having a medical 
condition after positive test results

• Find out a probable outcome of political elections

• Improve machine-learning performance

• Even to “prove” or “disprove” the existence of God

Use Bayesian Reasoning

http://www.scielo.br/pdf/csp/v31n1/0102-311X-csp-31-01-00026.pdf
http://journals.sagepub.com/doi/abs/10.1177/2158244015579724
http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf
https://www.amazon.com/Probability-God-Simple-Calculation-Ultimate/dp/1400054788
https://www.youtube.com/watch?v=NFGTu-OxFpU


Mathematical predictions

• We can ‘predict’ where the spacecraft will be at noon in 
2 months from now

• We cannot predict where you will be tomorrow at noon

• But, based on numerous observations (evidence), we can 
estimate the probability



Outline

• Belief and evidence

• Empirical reasoning: always probabilistic

• Inductive reasoning with probabilities

• Bayes method for updating beliefs

• Naïve Bayes classifier



Need for probabilistic learners

• Given the evidence (data),  

can we certainly derive 

the diagnostic classification rule: 

if Toothache=true then Cavity=true ?

• This rule isn’t right always.  

– Not all patients with toothache have cavities - some of them 
have gum disease, an abscess, etc.

• We could try an inverted association rule:

if Cavity=true then Toothache=true

• But this rule isn’t necessarily right either: not all cavities cause 
pain.

Name Toothache … Cavity

Smith true … true

Mike true … true

Mary false … true

Quincy true … false

… … … …

Historical data



Certainty and Probability
• The connection between toothaches and cavities is not a 

certain logical consequence in either direction.

• However, we can provide a probability that given an evidence 
(toothache) the patient has cavity. 

• For this we need to know:

– Prior probability of having cavity: how many times dentist 
patients had cavities: P(cavity)

– The number of times that the evidence (toothache) was observed 
among all cavity patients: P(toothache|cavity)



Bayes' Rule 
for diagnostic probability

Bayes' rule: 

• Useful for assessing diagnostic probability from symptomatic
probability as:

P(Cause|Symptom) = P(Symptom|Cause) P(Cause) / P(Symptom)

• Bayes’s rule is useful in practice because there are many cases 
where we do have good probability estimates for these three 
numbers and need to compute the fourth

P(A|B)=P(A)*P(B|A)/P(B)



Classifier based on Bayes rule

• Given data – evidence - we can build a classifier which will 
classify a new record as class C (yes or no) by comparing 
probabilities of yes and of no

• In this case all the attributes except C are evidences E

• The machine learning task is to evaluate P(E|C) from 
historical data and based on P(E|C) and prior probabilities 
P(C=Yes) and P(C=No) compare P(C=Yes|E) and P(C=No|E) 
using Bayes rule.



Single-evidence classifier: priors

• Prior probabilities:

P(Play=yes)=9/14, P(play=no)=5/14 

• From recording only ‘play’/’not play’ we have 

5:9 odds for play to be canceled today 

Humidity Play

High No

High No

High Yes

High Yes

Normal Yes

Normal No

Normal Yes

High No

Normal Yes

Normal Yes

Normal Yes

High Yes

Normal Yes

High No

event 

(class)



Single-evidence classifier: humidity

• Priors:    P(Play=yes)=9/14, P(play=no)=5/14

• After adding evidence about Humidity we have:

How many times Humidity=normal out of all 9 Yes’s: 

P(normal|yes)=6/9

How many times Humidity=normal out of all 5 No’s: 

P(normal|no)=1/5

• Similarly:

P(high|yes)=3/9

P(high|no)=4/5

evidence

event 

(class)

Humidity Play

High No

High No

High Yes

High Yes

Normal Yes

Normal No

Normal Yes

High No

Normal Yes

Normal Yes

Normal Yes

High Yes

Normal Yes

High No

Play

Humidity



Single-evidence classifier: prediction

• P(yes)=9/14, P(no)=5/14

• P(high|yes)=3/9

• P(high|no)=4/5

Today is a high humidity day, what is the 
probability to play?

• P(yes|high)=P(yes)*P(high|yes)/P(high)

• P(no|high)=P(no)*P(high|no)/P(high)

evidence

event 

(class)

Humidity Play

High No

High No

High Yes

High Yes

Normal Yes

Normal No

Normal Yes

High No

Normal Yes

Normal Yes

Normal Yes

High Yes

Normal Yes

High No



Single-evidence classifier: prediction

P(yes)=9/14, P(no)=5/14

P(high|yes)=3/9

P(high|no)=4/5

Today is a high humidity day, what is the 
probability to play?

P(yes|high)=P(yes)*P(high|yes)/P(high) = 
[9/14*3/9] * 1/P(high) = 3/14 α

P(no|high)=P(no)*P(high|no)/P(high) = [5/14*4/5] 
* 1/P(high) = 4/14 α

3:4 odds to play given high humidity

(vs. 9:5 before the evidence)

evidence

event 

(class)

Humidity Play

High No

High No

High Yes

High Yes

Normal Yes

Normal No

Normal Yes

High No

Normal Yes

Normal Yes

Normal Yes

High Yes

Normal Yes

High No



Conditional independence of 2 
variables given the third

P(A ∩ B | C) = 1/9

P(A ∩ B) = 4/36 = 1/9

P(A ∩ B | C) = P(A ∩ B)

P(A|C) = 3/9

P(B|C) = 3/9

P(A ∩ B | C) = P(A|C)*P(B|C) 

A and B are independent in the world 
where C is True (C is known, it occured)

BA C

However, in general A and B are not independent:

P(A) = 13/36 ≈ 0.36, and P(A|B) = 4/13 ≈ 0.31 → P(A) ≠ P(A|B)

Definition of 
conditional 
independence



Bayes’ rule – two evidences

If evidence1 is conditionally independent of evidence2
given class value:

P(class = B|evidence1,evidence2) = 
P(evidence1,evidence2|class=B)∗P(class=B)

P(evidence1,evidence2)

P(class = B|evidence1,evidence2) = 
P(evidence1|class=B)∗P(evidence2|class=B)P(class=B)

P(evidence1,evidence2)



Comparing probability of 2 classes

This approach only holds if we assume conditional 
independence between evidence1, evidence2

The same – let’s call it 1/α



Generalized
for N evidences

• Two assumptions: 

Attributes (evidences) are:

– equally important

– conditionally independent (given the class value)

• This means that knowledge about the value of a particular 
attribute doesn’t tell us anything about the value of another 
attribute given the class value (inside the same class)



Naïve Bayes classifier
To predict class value for a set of attribute values (evidences) -

for each class value Ai compute and compare: 

• Naïve – because it assumes conditional independence of 
variables

• Although based on assumptions that are almost never correct, 
this scheme works well in practice!



The weather data example



Multi-evidence classifier

Play

TempOutlook Humidity Windy

Event to predict (hidden)

Set of evidences (demonstrate themselves)



The weather data example: probabilities

Play Sunny Cool High 
humidity

Windy=
true

Yes: 9 2/9 3/9 3/9 3/9

No: 5 3/5 1/5 4/5 3/5

Total 5 4 7 6



The weather data example: yes

P( yes | E) = 

P(Sunny | yes) *

P(Cool | yes) *

P(Humidity=High | yes) *

P(Windy=True | yes) *

P(yes) / P(E) = 

= (2/9) * 

(3/9) * 

(3/9) * 

(3/9) *

(9/14) / P(E) = 0.0053 / P(E) 

Don’t worry about the 1/P(E):

It’s alpha - the normalization constant.

Play Sunny Cool High 
humidity

Windy=
true

Yes: 9 2/9 3/9 3/9 3/9

No: 5 3/5 1/5 4/5 3/5

Total 5 4 7 6



The weather data example: no

P( no | E) = 

P(Sunny | no) *

P(Cool | no) *

P(Humidity=High | no) *

P(Windy=True | no) *

P(no) / P(E) = 

= (3/5) * 

(1/5) * 

(4/5) * 

(3/5) *

(5/14) / P(E) = 0.0206 / P(E)

Play Sunny Cool High 
humidity

Windy=
true

Yes: 9 2/9 3/9 3/9 3/9

No: 5 3/5 1/5 4/5 3/5

Total 5 4 7 6



The weather data example: decision

P( yes | E) = 0.0053 / P(E)

P( no | E) = 0.0206 / P(E)

More probable: no.

It would be nice to give the actual 
probability estimates



Normalization constant 1/P(E)

P(play=yes | E) + P(play=no | E) = 1 i.e.

0.0053 / P(E) + 0.0206 / P(E) = 1 i.e.

P(E) = 0.0053 + 0.0206

So, 

P(play=yes | E) = 0.0053 / (0.0053 + 0.0206) = 20.5%

P(play=no | E) = 0.0206 / (0.0053 + 0.0206) = 79.5%

E

play=yes play=no

20.5%
79.5%



In other words:

P(play=yes | E) + P(play=no | E) = 1

P(play=yes |E) / P (play=no | E) = 0.0053 : 0.0206 = 0.26

0.26 * P (play=no | E)  + P (play=no | E)  = 1

P (play=no | E) = 1/1.26 = 79%

The remaining goes to yes:  P(play=yes |E) = 21%

E

play=yes play=no

20.5%
79.5%


