Bayesian Reasoning

Lecture 17

Statistics is a tool to aid and organize our reasoning and beliefs about the world

Statistics primer

 for Bayesian thinking
BOOLEAN-VALUED RANDOM VARIABLES

Discrete Boolean-valued random variables

A is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs or not.

Examples:

- $P=$ True: The US president in 2024 will be male
- $P=-$ True: The US president will not be a male
- H = True: You wake up tomorrow with a headache
- $\mathrm{H}=-$ True: No headache

Probabilities

We write $P(A=a)$, or $P(A=$ true) or simple $P(A)$ as "the fraction of possible worlds where $A=a$ is true"

The Axioms of Probability

We do not need to prove that:
I. $0<=P(A=a)<=1$

II. $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

A B
III. $P(A)+P(\neg A)=1$

Theorems of Probability: Theorem 1

$$
\mathrm{P}(-\mathrm{A})=1-\mathrm{P}(\mathrm{~A})
$$

Theorems of Probability: Theorem 2

 $P(A)=P(A \cap B)+P(A \cap \neg B)$

Conditional probability: definition

- $P(A \mid B)=$ fraction of worlds in which A is true out of all the worlds where B is true

$C P$ definition: $P(A \mid B)=P(A \cap B) / P(B)$

Conditional probability: definition

- $P(A \mid B)=$ fraction of worlds in which A is true out of all the worlds where B is true

A B

$P(\neg A \mid B)=P(\neg A \cap B) / P(B)$

Conditional probability: definition

- $P(B \mid A)=$ fraction of worlds in which B is true out of all the worlds where A is true

$P(B \mid A)=P(A \cap B) / P(A)$

$P(A \cap B)=4 / 60$
$P(A)=20 / 60$
$P(B \mid A)=4 / 60: 20 / 60=0.2$

Probabilistic independence

Two random variables A and B are mutually independent if $P(A \mid B)=P(A)$, which means that: Knowing that B is true (or false) does not change the probability of A

$$
\begin{aligned}
& P(A \mid B)=P(A) \\
& P(\neg A \mid B)=P(\neg A) \\
& P(A \mid \neg B)=P(A) \\
& P(\neg A \mid \neg B)=P(A)
\end{aligned}
$$

$$
\begin{aligned}
& 15 / 30=30 / 60 \\
& 15 / 30=30 / 60 \\
& 15 / 30=30 / 60 \\
& 15 / 30=30 / 60
\end{aligned}
$$

Independent and mutually

exclusive events

A is independent of B : knowing that B is true (or false) does not change the probability of A :

$$
P(A \mid B)=P(A)
$$

A and B are mutually exclusive - not independent variables: if A is true then B is false, if A is false then B is true with probability $P(B \mid \neg A)$

$$
P(A \cap B)=0
$$

Joint probability of two events

From the definition of conditional probabilities:

$$
P(A \mid B)=P(A \cap B) / P(B)
$$

we can compute $P(A \cap B)$ - that both events happened together:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

If A and B are independent that becomes:

$$
P(A \cap B)=P(A) P(B)
$$

Probability of two mutually

 exclusive eventsIf A and B are mutually exclusive:
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

A and \neg A are mutually exclusive:
$P(A$ or $\neg A)=P(A)+P(\neg A)=1$

Conditional independence

Conditional independence means that once you know the value of 1 random variable, other variables become independent

Example: (Height, Vocabulary) are not independent since very small people tend to be children, known for their more basic vocabularies

But given that two people are 19 years old (i.e., conditional on age) there is no reason to think that one person's vocabulary is larger if we are told that they are taller.

So given that we know Age, we can calculate joint conditional probability of (Height, Vocabulary) as a simple multiplication.

Conditional independence of 2 variables given the third

$$
\left.\begin{array}{l}
P(A \cap B \mid C)=1 / 9 \\
P(A \cap B)=4 / 36=1 / 9 \\
P(A \cap B \mid C)=P(A \cap B) \\
P(A \mid C)=3 / 9 \\
P(B \mid C)=3 / 9 \\
P(A \cap B \mid C)=P(A \mid C)^{*} P(B \mid C) \\
\text { Definition of } \\
\text { independence }
\end{array}\right]
$$

However, in general A and B are not independent:
$\mathrm{P}(\mathrm{A})=13 / 36 \approx 0.36$, and $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=4 / 13 \approx 0.31 \rightarrow \mathrm{P}(\mathrm{A}) \neq \mathrm{P}(\mathrm{A} \mid \mathrm{B})$

Bayes theorem

$$
P(A \cap B)=P(A \mid B) P(B)
$$

On the other hand:

$$
\begin{gathered}
P(B \cap A)=P(B \mid A) P(A) \\
\quad \downarrow \\
P(A \mid B) P(B)=P(B \mid A) P(A)
\end{gathered}
$$

and we can express conditional probability of A given B through conditional probability of B given A and unconditional probabilities of A and B :

$$
P(A \mid B)=P(B \mid A) P(A) / P(B)
$$

Multiple Boolean random variables

All theorems for 2 Boolean-valued random variables can be extended to several random variables $C, E_{1}, E_{2}, \ldots, E_{n}$.

Let $C, E_{1}, E_{2}, \ldots, E_{n}$ be Boolean-valued random variables.
For convenience, we will let E denote the n-tuple of random variables $\left(E_{1}, E_{2}, \ldots, E_{n}\right)$

$$
\begin{aligned}
& E_{1}, E_{2}, \ldots, E_{n}=E \quad \begin{array}{c}
\text { Just a } \\
\text { notation }
\end{array} \\
& P\left(C \cap E_{1} \cap E_{2} \cap \ldots \cap E_{n}\right)=P\left(C, E_{1}, E_{2}, \ldots E_{n}\right)=P(C, E)
\end{aligned}
$$

Chain rule:

$$
P(C, E)=P(C) P\left(E_{1} / C, E_{2}, \ldots E_{n}\right) P\left(E_{2} / C, E_{1}, E_{3}, \ldots, E_{n}\right) x \ldots x P\left(E_{n} / C, E_{1}, \ldots E_{n-1}\right)
$$

Multiple variables dependent on C

C - condition
E - evidence (event)
If $E_{1}, \ldots E_{n}$ are mutually conditionally independent given C :

$$
P(C, E)=P(C) P\left(E_{1} \mid C\right) P\left(E_{2} \mid C\right) x \ldots x P\left(E_{n} \mid C\right)
$$

And from Bayes theorem:

$$
P(C \mid E)=P(C, E) / P(E)
$$

That gives you a formula of the probability that the unknown condition C was true given a set of known evidences E

Main lecture

Bayesian Reasoning

Outline

- Belief and evidence
- Empirical reasoning: always probabilistic
- Inductive reasoning with probabilities
- Bayes method for updating beliefs
- Naïve Bayes classifier

Belief and evidence Inductive reasoning

- Critical thinking: always have good reasons for your beliefs
- Some reasons are 100% true - some only probable
- Inductive reasoning with probabilities: you always have a chance of being wrong

I believe that John will not be at the party

In the absence of facts

John will not be at the party

What are the odds?

I believe that John will not be at the party

Invalid (illogical) reasoning

I do not like John

John will not be at the party

What are the odds?

I believe that John will not be at the party

Probabilistic reasoning: valid fact (evidence)

I do not like John
John is very shy

John will not be at the party

What are the odds given this fact?

I believe that John will not be at the party

More facts - update your beliefs

John will not be at the party

What are the odds?

Bayesian beliefs

- How do we judge that something is true?
- Can mathematics help make judgments more accurate?
- Bayes: our believes should be updated as new evidence becomes available

O. Bayed.

Bayes' method for updating beliefs

- There are 2 events: A and not $A(B)$ which you believe occur with probabilities $P(A)$ and $P(B)$. Estimation $P(A): P(B)$ represents odds of A vs. B.
- Collect evidence data \mathbf{E}.
- Re-estimate $P(A \mid E): P(B \mid E)$ and update your beliefs.

Probabilities. Bayes theorem

Bayes theorem (formalized by Laplace)

$$
\begin{aligned}
& P(A \mid E)=P(A \cap E) / P(E) \\
& P(E \mid A)=P(A \cap E) / P(A)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Probability of } \\
\text { event } A \text { given } \\
\text { evidence }
\end{array} \\
& P\left(\begin{array}{c}
\text { Probability of } \\
\text { evidence given } \\
\text { event } A
\end{array}\right. \\
& P(A \mid E)=P(E \mid A) P(A) / P(E)
\end{aligned}
$$

Probability of event A without evidence (prior probability)

Bayes' method with probabilities

- There are 2 events: A and not $A(B)$ which you believe occur with probabilities $P(A)$ and $P(B)$. Estimation $P(A): P(B)$ represents odds of A vs. B.
- Collect evidence data \mathbf{E}.
- Re-estimate $P(A \mid E): P(B \mid E)$ and update your beliefs.

The updated odds are computed as:

$$
\frac{P(A \mid E)}{P(B \mid E)}=\frac{P(E \mid A) P(A) / P(E)}{P(E \mid B) P(B) / P(E)}
$$

Bayes' method with probabilities

- There are 2 events: A and not $A(B)$ which you believe occur with probabilities $P(A)$ and $P(B)$. Estimation $P(A): P(B)$ represents odds of A vs. B.
- Collect evidence data \mathbf{E}.
- Re-estimate $P(A \mid E): P(B \mid E)$ and update your beliefs.
or simply

$$
\frac{P(A \mid E)}{P(B \mid E)}=\frac{P(E \mid A) P(A)}{P(E \mid B) P(B)}
$$

Explanation by example: hit-and-run (fictitious)

- Taxicab company has 75 blue cabs (B) and 15 green cabs (G)
- At night when there are no other cars on the street: hit-and-run episode
- Question: what is more probable:
B or G

What is more probable: B or G

$$
P(B): P(G)=5: 1
$$

New evidence

- Witness: "I saw a green cab": E_{G}
- What is the probability that the witness really saw a green car?
- Witness is tested at night conditions: identifies correct color 4 times out of 5
- The eyewitness test shows:
$P\left(E_{G} \mid G\right)=4 / 5$ (correctly identified)
$P\left(E_{G} \mid B\right)=1 / 5$ (incorrectly identified)

Updating the odds

- In our case we want to compare:
the car was G given a witness testimony $E_{G}: P\left(G \mid E_{G}\right)$
VS.
the car was B given a witness testimony $E_{G}: P\left(B \mid E_{G}\right)$

Note: There is no way to know which of 2 was true, we just estimate

Back to hit-and-run

All cabs were on the streets:
Prior odds ratio: $P(B): P(G)=5 / 1$
Updated odds ratio: $\frac{P\left(B \mid E_{G}\right)}{P\left(G \mid E_{G}\right)}=\frac{P(B) * P\left(E_{G} \mid B\right)}{P(G) * P\left(E_{G} \mid G\right)}$

$P\left(E_{G} \mid G\right)=4 / 5$ (correctly identified)
$P\left(E_{G} \mid B\right)=1 / 5$ (incorrectly identified)

New odds

$$
\frac{P\left(B \mid E_{G} L\right.}{P\left(G \mid E_{G}\right)}=\quad \frac{P(B) * P\left(E_{G} \mid B\right)}{P(G) * P\left(E_{G} \mid G\right)}
$$

Still 5:4 odds that the car was B!

Hit-and-run: full calculation

$$
\begin{aligned}
& P(B)=5 / 6, P(G)=1 / 6 \\
& P\left(E_{G} \mid G\right)=4 / 5 \quad P\left(E_{G} \mid B\right)=1 / 5
\end{aligned}
$$

- Probability that car was green given the evidence E_{G} :
$P\left(G \mid E_{G}\right)=P(G) * P\left(E_{G} \mid G\right) / P\left(E_{G}\right)=[1 / 6 * 4 / 5] / P\left(E_{G}\right)=4 / 30 P\left(E_{G}\right)$
//- 4 parts of $30 P\left(X_{G}\right)$
- Probability that car was blue given the evidence X_{G} :

$$
\begin{aligned}
P\left(B \mid E_{G}\right) & =P(B)^{*} P\left(E_{G} \mid B\right) / P\left(E_{G}\right)=[5 / 6 * 1 / 5] / P\left(E_{G}\right)=5 / 30 P\left(E_{G}\right) \\
& / /-5 \text { parts of } 30 P\left(X_{G}\right)
\end{aligned}
$$

Bayes in 'real' life. Example 1

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \mid H)=$?

Bayes in 'real' life. Example 1

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \mid H)=P(H \mid F) P(F) / P(H)$
$=1 / 2 * 1 / 40 * 10=1 / 8$

Bayes in 'real' life. Example 2

WIN envelope

LOSE envelope

Someone draws an envelope at random and offers to sell it to you. How much should you pay?
The probability to win is 1:1. Pay no more than 50c.

Bayes in 'real' life. Example 2

WIN envelope

LOSE envelope

Variant: before deciding, you are allowed to see one bead drawn from the envelope.
Suppose it's black: How much should you pay?
Suppose it's red: How much should you pay?

Bayes in 'real' life. Example 2

WIN envelope

LOSE envelope

Variant: before deciding, you are allowed to see one bead drawn from the envelope.
Suppose it's black: How much should you pay?
$P(W \mid b)=P(b \mid W) P(W) / P(b)=(1 / 2 * 1 / 2) / P(b)=1 / 4 * 1 / P(b)$
$P(L \mid b)=P(b \mid L) P(L) / P(b)=(2 / 3 * 1 / 2) / P(b)=1 / 3 * 1 / P(b)$
Probability to win is now 3:4-pay not more than $\$(3 / 7)$

Suppose it's red: How much should you pay? - the same logic

When you want to:

- Determine the probability of having a medical condition after positive test results
- Find out a probable outcome of political elections
- Improve machine-learning performance
- Even to "prove" or "disprove" the existence of God

Use Bayesian Reasoning

Mathematical predictions

- We can 'predict' where the spacecraft will be at noon in 2 months from now
- We cannot predict where you will be tomorrow at noon
- But, based on numerous observations (evidence), we can estimate the probability

Outline

- Belief and evidence
- Empirical reasoning: always probabilistic
- Inductive reasoning with probabilities
- Bayes method for updating beliefs
- Naïve Bayes classifier

Need for probabilistic learners

- Given the evidence (data),
can we certainly derive the diagnostic classification rule: if Toothache=true then Cavity=true ?
- This rule isn't right always.

Name	Toothache	\ldots	Cavity
Smith	true	\ldots	true
Mike	true	\ldots	true
Mary	false	\ldots	true
Quincy	true	\ldots	false
\ldots	\ldots	\ldots	\ldots

Historical data

- Not all patients with toothache have cavities - some of them have gum disease, an abscess, etc.
- We could try an inverted association rule:
if Cavity=true then Toothache=true
- But this rule isn't necessarily right either: not all cavities cause pain.

Certainty and Probability

- The connection between toothaches and cavities is not a certain logical consequence in either direction.
- However, we can provide a probability that given an evidence (toothache) the patient has cavity.
- For this we need to know:
- Prior probability of having cavity: how many times dentist patients had cavities: P (cavity)
- The number of times that the evidence (toothache) was observed among all cavity patients: P (toothache|cavity)

Bayes' Rule

for diagnostic probability

Bayes' rule:

$$
P(A \mid B)=P(A) * P(B \mid A) / P(B)
$$

- Useful for assessing diagnostic probability from symptomatic probability as:
P(Cause ${ }^{\text {Symptom })}=\mathrm{P}($ Symptom \mid Cause) $\mathrm{P}($ Cause) $/ \mathrm{P}($ Symptom $)$
- Bayes's rule is useful in practice because there are many cases where we do have good probability estimates for these three numbers and need to compute the fourth

Classifier based on Bayes rule

- Given data - evidence - we can build a classifier which will classify a new record as class C (yes or no) by comparing probabilities of yes and of no
- In this case all the attributes except C are evidences E
- The machine learning task is to evaluate $P(E \mid C)$ from historical data and based on $\mathrm{P}(E \mid C)$ and prior probabilities $\mathrm{P}(C=\mathrm{Yes})$ and $\mathrm{P}(C=$ No $)$ compare $\mathrm{P}(C=Y e s \mid E)$ and $\mathrm{P}(C=\mathrm{No} \mid E)$ using Bayes rule.

Single-evidence classifier: priors

event
(class)

Humidity	Play
High	No
High	No
High	Yes
High	Yes
Normal	Yes
Normal	No
Normal	Yes
High	No
Normal	Yes
Normal	Yes
Normal	Yes
High	Yes
Normal	Yes
High	No

- Prior probabilities:
$P($ Play=yes $)=9 / 14, P($ play $=$ no $)=5 / 14$
- From recording only 'play'/'not play' we have 5:9 odds for play to be canceled today

Single-evidence classifier: humidity

evidence	event (class)
Humidity	Play
High	No
High	No
High	Yes
High	Yes
Normal	Yes
Normal	No
Normal	Yes
High	No
Normal	Yes
Normal	Yes
Normal	Yes
High	Yes
Normal	Yes
High	No

- Priors: $P($ Play=yes $)=9 / 14, P($ play $=n o)=5 / 14$
- After adding evidence about Humidity we have: How many times Humidity=normal out of all 9 Yes's: $P($ normal|yes $)=6 / 9$

How many times Humidity=normal out of all 5 No's: P(normal|no)=1/5

- Similarly:

$$
\begin{aligned}
& \mathrm{P}(\text { high } \mid \text { yes })=3 / 9 \\
& \mathrm{P}(\text { high } \mid \text { no })=4 / 5
\end{aligned}
$$

Single-evidence classifier: prediction

evidence	event (class)
Humidity	Play
High	No
High	No
High	Yes
High	Yes
Normal	Yes
Normal	No
Normal	Yes
High	No
Normal	Yes
Normal	Yes
Normal	Yes
High	Yes
Normal	Yes
High	No

- $P($ yes $)=9 / 14, P(n o)=5 / 14$
- $P(h i g h \mid y e s)=3 / 9$
- $P($ high \mid no $)=4 / 5$

Today is a high humidity day, what is the probability to play?

- $\mathrm{P}($ yes \mid high $)=\mathrm{P}($ yes $) * \mathrm{P}$ (high \mid yes $) / \mathrm{P}$ (high)
- $P($ no \mid high $)=P(n o) * P($ high $\mid n o) / P($ high $)$

Single-evidence classifier: prediction

evidenceevent (class)	
Humidity	Play
High	No
High	No
High	Yes
High	Yes
Normal	Yes
Normal	No
Normal	Yes
High	No
Normal	Yes
Normal	Yes
Normal	Yes
High	Yes
Normal	Yes
High	No

$P($ yes $)=9 / 14, P($ no $)=5 / 14$
$P($ high \mid yes $)=3 / 9$
$\mathrm{P}($ high \mid no $)=4 / 5$

Today is a high humidity day, what is the probability to play?
$\mathrm{P}($ yes \mid high $)=\mathrm{P}($ yes $) * \mathrm{P}($ high \mid yes $) / \mathrm{P}($ high $)=$ [9/14*3/9] * 1/P(high) $=3 / 14 \alpha$
$\mathrm{P}($ no \mid high $)=\mathrm{P}($ no $) * \mathrm{P}($ high \mid no $) / \mathrm{P}($ high $)=[5 / 14 * 4 / 5]$

* $1 / \mathrm{P}(\mathrm{high})=4 / 14 \alpha$

3:4 odds to play given high humidity
(vs. 9:5 before the evidence)

Conditional independence of 2 variables given the third

$$
\begin{aligned}
& P(A \cap B \mid C)=1 / 9 \\
& P(A \cap B)=4 / 36=1 / 9 \\
& P(A \cap B \mid C)=P(A \cap B) \quad \begin{array}{l}
\text { Definition of } \\
\text { conditional } \\
\text { independence }
\end{array} \\
& P(A \mid C)=3 / 9 \\
& P(B \mid C)=3 / 9 \\
& P(A \cap B \mid C)=P(A \mid C)^{*} P(B \mid C) \\
& A \text { and } B \text { are independent in the world } \\
& \text { where } C \text { is True }(C \text { is known, it occured) }
\end{aligned}
$$

However, in general A and B are not independent:

$$
\mathrm{P}(\mathrm{~A})=13 / 36 \approx 0.36 \text {, and } \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=4 / 13 \approx 0.31 \rightarrow \mathrm{P}(\mathrm{~A}) \neq \mathrm{P}(\mathrm{~A} \mid \mathrm{B})
$$

Bayes' rule - two evidences

$$
\mathrm{P}(\text { class }=\mathrm{B} \mid \text { evidence } 1, \text { evidence } 2)=\frac{\mathrm{P}(\text { evidence1,evidence } 2 \mid \text { class }=\mathrm{B}) * \mathrm{P}(\text { class }=\mathrm{B})}{\mathrm{P}(\text { evidence } 1, \text { evidence } 2)}
$$

If evidence 1 is conditionally independent of evidence 2 given class value:

$$
\mathrm{P}(\text { class }=\mathrm{B} \mid \text { evidence } 1, \text { evidence } 2)=\frac{\mathrm{P}(\text { evidence } 1 \mid \text { class }=\mathrm{B}) * \mathrm{P}(\text { evidence } 2 \mid \text { class }=\mathrm{B}) \mathrm{P}(\text { class }=\mathrm{B})}{\mathrm{P}(\text { evidence1, evidence } 2)}
$$

Comparing probability of 2 classes

$$
\begin{aligned}
& \mathrm{P}(\text { class }=\mathrm{A} \mid \text { evidence } 1, \text { evidence } 2) \\
& =\frac{\mathrm{P}(\text { evidence } 1 \mid \text { class }=\mathrm{A}) * \mathrm{P}(\text { evidence } 2 \mid \text { class }=\mathrm{A}) * \mathrm{P}(\text { class }=\mathrm{A})}{\mathrm{P}(\text { evidence } 1) * \mathrm{P}(\text { evidence } 2)} \\
& =\propto \mathrm{P}(\text { evidence } 1 \mid \text { class }=\mathrm{A}) * \mathrm{P}(\text { evidence } 2 \mid \text { class }=\mathrm{A}) * \mathrm{P}(\text { class }=\mathrm{A}) \\
& \text { The same - let's call it } 1 / \alpha \\
& \mathrm{P}(\text { class }=\mathrm{B} \mid \text { evidence } 1 \text {, evidence } 2) \\
& =\frac{\mathrm{P}(\text { evidence } 1 \mid \text { class }=\mathrm{B}) * \mathrm{P}(\text { evidence } 2 \mid \text { class }=\mathrm{B}) * \mathrm{P}(\text { class }=\mathrm{B})}{\mathrm{P}(\text { evidence } 1) * \mathrm{P}(\text { evidence } 2)} \\
& =\propto \mathrm{P}(\text { evidence } 1 \mid \text { class }=\mathrm{B}) * \mathrm{P}(\text { evidence } 2 \mid \text { class }=\mathrm{B}) * \mathrm{P}(\text { class }=\mathrm{B})
\end{aligned}
$$

This approach only holds if we assume conditional independence between evidence1, evidence2

Generalized

for N evidences

```
P(class = A|evidence1, evidence2, ... ,evidenceN )
```



```
=\proptoP
```

- Two assumptions:

Attributes (evidences) are:

- equally important
- conditionally independent (given the class value)
- This means that knowledge about the value of a particular attribute doesn't tell us anything about the value of another attribute given the class value (inside the same class)

Naïve Bayes classifier

To predict class value for a set of attribute values (evidences) for each class value A_{i} compute and compare:

$$
\begin{aligned}
\mathrm{P}(\text { class }= & \mathrm{A} \mid \text { evidence } 1, \text { evidence } 2, \ldots, \text { evidenceN }) \\
& =\frac{\mathrm{P}(\text { evidence } 1 \mid \text { class }=\mathrm{A}) * \cdots * \mathrm{P}(\text { evidence } N \mid \text { class }=\mathrm{A}) * \mathrm{P}(\text { class }=\mathrm{A})}{\mathrm{P}(\text { evidence }) * \cdots * \mathrm{P}(\text { evidence })} \\
& =\propto \mathrm{P}(\text { evidence } 1 \mid \text { class }=\mathrm{A}) * \cdots *(\text { evidenceN } \mid \text { class }=\mathrm{A}) * \mathrm{P}(\text { class }=\mathrm{A})
\end{aligned}
$$

- Naïve - because it assumes conditional independence of variables
- Although based on assumptions that are almost never correct, this scheme works well in practice!

The weather data example

Outlook	Temp.	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

- A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	$?$

Multi-evidence classifier

Set of evidences (demonstrate themselves)

The weather data example: probabilities

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

The weather data example: yes

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

$$
\begin{aligned}
& P(\text { yes } \mid E)= \\
& P(\text { Sunny | yes) * } \\
& P(\text { Cool | yes) * } \\
& P(\text { Humidity=High | yes) * } \\
& P(\text { Windy=True | yes) * } \\
& P(\text { yes } / P(E)= \\
& =(2 / 9)^{*} \\
& (3 / 9)^{*} \\
& (3 / 9)^{*} \\
& (3 / 9)^{*} \\
& (9 / 14) / P(E)=0.0053 / P(E)
\end{aligned}
$$

Play	Sunny	Cool	High humidity	Windy= true
Yes: 9	$2 / 9$	$3 / 9$	$3 / 9$	$3 / 9$
No: 5	$3 / 5$	$1 / 5$	$4 / 5$	$3 / 5$
Total	5	4	7	6

Don't worry about the 1/P(E):
It's alpha - the normalization constant.

The weather data example: no

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

$$
\begin{aligned}
& P(\text { no } \mid E)= \\
& P(\text { Sunny | no })^{*} \\
& P(\text { Cool | no })^{*} \\
& P(\text { Humidity=High | no })^{*} \\
& P(\text { Windy=True | no })^{*} \\
& P(\text { no } / P(E)= \\
& =(3 / 5)^{*} \\
& (1 / 5)^{*} \\
& (4 / 5)^{*} \\
& (3 / 5)^{*} \\
& (5 / 14) / P(E)=0.0206 / P(E)
\end{aligned}
$$

Play	Sunny	Cool	High humidity	Windy= true
Yes: 9	$2 / 9$	$3 / 9$	$3 / 9$	$3 / 9$
No: 5	$3 / 5$	$1 / 5$	$4 / 5$	$3 / 5$
Total	5	4	7	6

The weather data example: decision

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

$$
\begin{aligned}
& P(\text { yes } \mid E)=0.0053 / P(E) \\
& P(\text { no } \mid E)=0.0206 / P(E)
\end{aligned}
$$

More probable: no.

It would be nice to give the actual probability estimates

Outlook	Temp.	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Normalization constant 1/P(E)

$$
\begin{array}{ll}
P(\text { play }=\text { yes | } E)+P(\text { play }=\text { no } \mid E)=1 & \text { i.e. } \\
0.0053 / P(E)+0.0206 / P(E)=1 & \text { i.e. } \\
P(E)=0.0053+0.0206 &
\end{array}
$$

So,
$P($ play $=y e s \mid E)=0.0053 /(0.0053+0.0206)=20.5 \%$
$P($ play $=$ no $\mid E)=0.0206 /(0.0053+0.0206)=79.5 \%$

In other words:

$P($ play $=$ yes $\mid E)+P($ play $=$ no $\mid E)=1$
$P($ play $=$ yes $\mid E) / P($ play $=$ no $\mid E)=0.0053: 0.0206=0.26$
0.26 * $P($ play $=$ no $\mid E)+P($ play $=n o \mid E)=1$
$P($ play $=$ no $\mid E)=1 / 1.26=79 \%$
The remaining goes to yes: $P($ play=yes $\mid E)=21 \%$

